Lecture 4: Roles and groups in networks Noshir Contractor

Jane S. & William J. White Professor of Behavioral Sciences

Professor of Ind. Eng. & Mgmt. Sciences, McCormick School of Engineering Professor of Communication Studies, School of Communication & Professor of Management & Organizations, Kellogg School of Management, Director, Science of Networks in Communities (SONIC) Research Laboratory nosh@northwestern.edu

Brokerage & closure

	Low closure	High closure
High brokerage	Divisive group with diverse contacts	Cohesive group with diverse contacts
Low brokerage	Divisive group with homogenous contacts	Cohesive group with homogenous contacts

Different brokerage roles

- Coordinating
 - Insider brokering within group
- Consulting
 - Outsider brokering within group
- Gatekeeping
 - Insider brokering outsiders' access to insiders
- Representing
 - Insider brokering insiders' access to outsiders
- Liaising
 - One party brokering a second party's access to a third party

Structural balance

- Unbalanced triangles are sources of stress
 & dissonance
- Cartwright-Harary Theorem: If a graph is balanced, then either
 - All pairs of nodes are friends
 - There exist groups that are friendly within the group but members of groups are antagonistic to other groups

Balanced

Unbalanced

Strong, Weak, & Simmelian ties

Granovetter's strong ties: Simmelian ties:

- Time spent interacting
- Emotional intensity of interaction
- Mutual confiding
- Degree of reciprocal services

Krackhardt's strong ties:

- Trust
- Frequent interaction
- Affection
- Relationship history

- Addition of a third person fundamentally changes interaction dynamics
- Dyads: more individuality, withdrawal as bargaining power, but conflicts escalate
- Triads: reliance on norms, withdrawal diminishes power, conflicts moderated

Subgroups

- Bottom-up approaches
 - Cliques, clans, plexes, & cores
- Top-down approaches
 - Weak & strong components, blocks & cutpoints, lambda sets & bridges

Cliques

- Largest subset of actors that are directly and completely connected to the rest of the set
- "Maximal complete subgraph"
- 8 is a member of what cliques?

N-Cliques

- Largest subset of actors that are completely-connected with rest of the set within N steps
- N is typically 2
- "Long & stringy"
- Possible for N-clique members to be connected by non-members ⁽³⁾
- 18 is a member of what 2-cliques?

N-Clans

- Path between any two members of an N-clique must occur via members of the Nclique
- Ties to the "clique" by having ties to some member of the clique and are no farther than N steps from all members of the clique
- 14 is a member of what 2-clans?

K-plexes

- Node is a member of a "clique" of size N if it has direct ties to N-K members of that "clique"
- Creates large numbers of small groups
- Group members must have ties to most other group members, no intermediaries
- N=4, K=2?

K-cores

- Maximal group of actors all connected to K other members of the group
- Connection rather than immersion, closure, or clustering
- If an actor has some threshold of ties to a group, they may feel tied to the group even if they don't know all members
- What sets are 4-cores?

Strong & weak components

- Weak component
 - Set of connected nodes, regardless of direction of connections
- Strong component
 - A directed path must exist between two nodes for them to be in the same component

Cutpoints & bridges

Cutpoint

- Removing a node creates a new component
- Resulting divisions are blocks

Bridges

- Removing a link creates a new component
- Lambda sets
 - Importance of relationships based on flux through link
 - "Betweenness centrality" for a link

Equivalence

Structural equivalence

 Sets of actors having exactly the same set of relations as another actor (brothers)

• {A}, {B}, {C}, {D}, {E,F}, {G}, {H,I}

Automorphic equivalence

- Sets of actors having the same patterns of ties and are completely substitutable (cousins)
- {A}, {B,D}, {C}, {E,F,H,I}, {G}

Regular equivalence

- Sets of actors having similar relationships types with other sets (fathers)
- {A}, {B,C,D}, {E,F,G,H,I}

